Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 888
Filtrar
1.
BMC Pulm Med ; 24(1): 130, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491484

RESUMO

Bronchopulmonary dysplasia (BPD) is characterized by alveolar dysplasia, and evidence indicates that interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various inflammatory lung diseases. Nonetheless, the significance and mechanism of IRF4 in BPD remain unelucidated. Consequently, we established a mouse model of BPD through hyperoxia exposure, and ELISA was employed to measure interleukin-17 A (IL-17 A) and interleukin-6 (IL-6) expression levels in lung tissues. Western blotting was adopted to determine the expression of IRF4, surfactant protein C (SP-C), and podoplanin (T1α) in lung tissues. Flow cytometry was utilized for analyzing the percentages of FOXP3+ regulatory T cells (Tregs) and FOXP3+RORγt+ Tregs in CD4+ T cells in lung tissues to clarify the underlying mechanism. Our findings revealed that BPD mice exhibited disordered lung tissue structure, elevated IRF4 expression, decreased SP-C and T1α expression, increased IL-17 A and IL-6 levels, reduced proportion of FOXP3+ Tregs, and increased proportion of FOXP3+RORγt+ Tregs. For the purpose of further elucidating the effect of IRF4 on Treg phenotype switching induced by hyperoxia in lung tissues, we exposed neonatal mice with IRF4 knockout to hyperoxia. These mice exhibited regular lung tissue structure, increased proportion of FOXP3+ Tregs, reduced proportion of FOXP3+RORγt+ Tregs, elevated SP-C and T1α expression, and decreased IL-17 A and IL-6 levels. In conclusion, our findings demonstrate that IRF4-mediated Treg phenotype switching in lung tissues exacerbates alveolar epithelial cell injury under hyperoxia exposure.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Camundongos , Células Epiteliais Alveolares/patologia , Linfócitos T Reguladores/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Hiperóxia/complicações , Displasia Broncopulmonar/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fenótipo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
2.
NPJ Biofilms Microbiomes ; 10(1): 32, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553470

RESUMO

Alteration of gut microbiota can affect chronic lung diseases, such as asthma and chronic obstructive pulmonary disease, through abnormal immune and inflammatory responses. Previous studies have shown a feasible connection between gut microbiota and bronchopulmonary dysplasia (BPD) in preterm infants. However, whether BPD can be ameliorated by restoring the gut microbiota remains unclear. In preterm infants with BPD, we found variance in the diversity and structure of gut microbiota. Similarly, BPD rats showed gut dysbiosis, characterized by a deficiency of Lactobacillus, which was abundant in normal rats. We therefore explored the effect and potential mechanism of action of a probiotic strain, Lactobacillus plantarum L168, in improving BPD. The BPD rats were treated with L. plantarum L168 by gavage for 2 weeks, and the effect was evaluated by lung histopathology, lung function, and serum inflammatory markers. Subsequently, we observed reduced lung injury and improved lung development in BPD rats exposed to L. plantarum L168. Further evaluation revealed that L. plantarum L168 improved intestinal permeability in BPD rats. Serum metabolomics showed altered inflammation-associated metabolites following L. plantarum L168 intervention, notably a marked increase in anti-inflammatory metabolites. In agreement with the metabolites analysis, RNA-seq analysis of the intestine and lung showed that inflammation and immune-related genes were down-regulated. Based on the information from RNA-seq, we validated that L. plantarum L168 might improve BPD relating to down-regulation of TLR4 /NF-κB /CCL4 pathway. Together, our findings suggest the potential of L. plantarum L168 to provide probiotic-based therapeutic strategies for BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lactobacillus plantarum , Pneumonia , Humanos , Recém-Nascido , Animais , Ratos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/etiologia , Hiperóxia/complicações , Hiperóxia/metabolismo , Recém-Nascido Prematuro , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Biomarcadores
3.
Inhal Toxicol ; 36(3): 174-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449063

RESUMO

BACKGROUND: Oxygen therapy is an alternative for many patients with hypoxemia. However, this practice can be dangerous as oxygen is closely associated with the development of oxidative stress. METHODS: Male Wistar rats were exposed to hyperoxia with a 40% fraction of inspired oxygen (FIO2) and hyperoxia (FIO2 = 60%) for 120 min. Blood and lung tissue samples were collected for gas, oxidative stress, and inflammatory analyses. RESULTS: Hyperoxia (FIO2 = 60%) increased PaCO2 and PaO2, decreased blood pH and caused thrombocytopenia and lymphocytosis. In lung tissue, neutrophil infiltration, nitric oxide concentration, carbonyl protein formation and the activity of complexes I and II of the mitochondrial respiratory chain increased. FIO2 = 60% decreased SOD activity and caused several histologic changes. CONCLUSION: In conclusion, we have experimentally demonstrated that short-term exposure to high FIO2 can cause oxidative stress in the lung.


Assuntos
Hiperóxia , Humanos , Ratos , Animais , Masculino , Hiperóxia/complicações , Hiperóxia/metabolismo , Transporte de Elétrons , Ratos Wistar , Pulmão/metabolismo , Oxigênio , Estresse Oxidativo
4.
Crit Care ; 28(1): 66, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429791

RESUMO

Molecular oxygen is typically delivered to patients via oxygen inhalation or extracorporeal membrane oxygenation (ECMO), potentially resulting in systemic hyperoxia from liberal oxygen inhalation or localized hyperoxia in the lower body from peripheral venoarterial (VA) ECMO. Consequently, this exposes the gastrointestinal tract to excessive oxygen levels. Hyperoxia can trigger organ damage due to the overproduction of reactive oxygen species and is associated with increased mortality. The gut and gut microbiome play pivotal roles in critical illnesses and even small variations in oxygen levels can have a dramatic influence on the physiology and ecology of gut microbes. Here, we reviewed the emerging preclinical evidence which highlights how excessive inhaled oxygen can provoke diffuse villous damage, barrier dysfunction in the gut, and gut dysbiosis. The hallmark of this dysbiosis includes the expansion of oxygen-tolerant pathogens (e.g., Enterobacteriaceae) and the depletion of beneficial oxygen-intolerant microbes (e.g., Muribaculaceae). Furthermore, we discussed potential impact of oxygen on the gut in various underlying critical illnesses involving inspiratory oxygen and peripheral VA-ECMO. Currently, the available findings in this area are somewhat controversial, and a consensus has not yet to be reached. It appears that targeting near-physiological oxygenation levels may offer a means to avoid hyperoxia-induced gut injury and hypoxia-induced mesenteric ischemia. However, the optimal oxygenation target may vary depending on special clinical conditions, including acute hypoxia in adults and neonates, as well as particular patients undergoing gastrointestinal surgery or VA-ECMO support. Last, we outlined the current challenges and the need for future studies in this area. Insights into this vital ongoing research can assist clinicians in optimizing oxygenation for critically ill patients.


Assuntos
Hiperóxia , Adulto , Recém-Nascido , Humanos , Hiperóxia/complicações , Estado Terminal/terapia , Disbiose , Oxigênio/efeitos adversos , Hipóxia
5.
Stem Cell Res Ther ; 15(1): 80, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486338

RESUMO

BACKGROUND: Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among preterm infants. Human induced pluripotent stem cells (hiPSCs) have shown promise in repairing injury in animal BPD models. Evidence suggests they exert their effects via paracrine mechanisms. We aim herein to assess the effectiveness of extracellular vesicles (EVs) derived from hiPSCs and their alveolar progenies (diPSCs) in attenuating hyperoxic injury in a preterm lung explant model. METHODS: Murine lung lobes were harvested on embryonic day 17.5 and maintained in air-liquid interface. Following exposure to 95% O2 for 24 h, media was supplemented with 5 × 106 particles/mL of EVs isolated from hiPSCs or diPSCs by size-exclusion chromatography. On day 3, explants were assessed using Hematoxylin-Eosin staining with mean linear intercept (MLI) measurements, immunohistochemistry, VEGFa and antioxidant gene expression. Statistical analysis was conducted using one-way ANOVA and Multiple Comparison Test. EV proteomic profiling was performed, and annotations focused on alveolarization and angiogenesis signaling pathways, as well as anti-inflammatory, anti-oxidant, and regenerative pathways. RESULTS: Exposure of fetal lung explants to hyperoxia induced airspace enlargement, increased MLI, upregulation of anti-oxidants Prdx5 and Nfe2l2 with decreased VEGFa expression. Treatment with hiPSC-EVs improved parenchymal histologic changes. No overt changes in vasculature structure were observed on immunohistochemistry in our in vitro model. However, VEGFa and anti-oxidant genes were upregulated with diPSC-EVs, suggesting a pro-angiogenic and cytoprotective potential. EV proteomic analysis provided new insights in regard to potential pathways influencing lung regeneration. CONCLUSION: This proof-of-concept in vitro study reveals a potential role for hiPSC- and diPSC-EVs in attenuating lung changes associated with prematurity and oxygen exposure. Our findings pave the way for a novel cell free approach to prevent and/or treat BPD, and ultimately reduce the global burden of the disease.


Assuntos
Displasia Broncopulmonar , Vesículas Extracelulares , Hiperóxia , Células-Tronco Pluripotentes Induzidas , Lesão Pulmonar , Animais , Camundongos , Humanos , Recém-Nascido , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Animais Recém-Nascidos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lesão Pulmonar/terapia , Lesão Pulmonar/etiologia , Antioxidantes/metabolismo , Proteômica , Recém-Nascido Prematuro , Pulmão/patologia , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo
6.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(1): 33-39, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38404269

RESUMO

OBJECTIVE: To observe and verify the changes of transcriptome in hyperoxia-induced acute lung injury (HALI), and to further clarify the changes of pathways in HALI. METHODS: Twelve healthy male C57BL/6J mice were randomly divided into normoxia group and HALI group according to the random number table, with 6 mice in each group. The mice in the normoxia group were fed normally in the room, and the mice in the HALI group was exposed to 95% oxygen to reproduce the HALI animal model. After 72 hours of hyperoxia exposure, the lung tissues were taken for transcriptome sequencing, and then Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathway enrichment analysis was performed. The pathological changes of lung tissue were observed under light microscope after hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to verify the key molecules in the signal pathways closely related to HALI identified by transcriptomics analysis. RESULTS: Transcriptomic analysis showed that hyperoxia induced 537 differentially expressed genes in lung tissue of mice as compared with the normoxia group including 239 up-regulated genes and 298 down-regulated genes. Further KEGG pathway enrichment analysis identified 20 most significantly enriched pathway entries, and the top three pathways were ferroptosis signaling pathway, p53 signaling pathway and glutathione (GSH) metabolism signaling pathway. The related genes in the ferroptosis signaling pathway included the up-regulated gene heme oxygenase-1 (HO-1) and the down-regulated gene solute carrier family 7 member 11 (SLC7A11). The related genes in the p53 signaling pathway included the up-regulated gene tumor suppressor gene p53 and the down-regulated gene murine double minute 2 (MDM2). The related gene in the GSH metabolic signaling pathway was up-regulated gene glutaredoxin 1 (Grx1). The light microscope showed that the pulmonary alveolar structure of the normoxia group was normal. In the HALI group, the pulmonary alveolar septum widened and thickened, and the alveolar cavity shrank or disappeared. RT-RCR and Western blotting confirmed that compared with the normoxia group, the mRNA and protein expressions of HO-1 and p53 in lung tissue of the HALI group were significantly increased [HO-1 mRNA (2-ΔΔCt): 2.16±0.17 vs. 1.00±0.00, HO-1 protein (HO-1/ß-actin): 1.05±0.01 vs. 0.79±0.01, p53 mRNA (2-ΔΔCt): 2.52±0.13 vs. 1.00±0.00, p53 protein (p53/ß-actin): 1.12±0.02 vs. 0.58±0.03, all P < 0.05], and the mRNA and protein expressions of Grx1, MDM2, SLC7A11 were significantly decreased [Grx1 mRNA (2-ΔΔCt): 0.53±0.05 vs. 1.00±0.00, Grx1 protein (Grx1/ß-actin): 0.54±0.03 vs. 0.93±0.01, MDM2 mRNA (2-ΔΔCt): 0.48±0.03 vs. 1.00±0.00, MDM2 protein (MDM2/ß-actin): 0.57±0.02 vs. 1.05±0.01, SLC7A11 mRNA (2-ΔΔCt): 0.50±0.06 vs. 1.00±0.00, SLC7A11 protein (SLC7A11/ß-actin): 0.72±0.03 vs. 0.98±0.01, all P < 0.05]. CONCLUSIONS: HALI is closely related to ferroptosis, p53 and GSH metabolism signaling pathways. Targeting the key targets in ferroptosis, p53 and GSH metabolism signaling pathways may be an important strategy for the prevention and treatment of HALI.


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , Ratos , Camundongos , Masculino , Animais , Proteína Supressora de Tumor p53 , Hiperóxia/complicações , Ratos Sprague-Dawley , Actinas , Camundongos Endogâmicos C57BL , Transdução de Sinais , Perfilação da Expressão Gênica , RNA Mensageiro
7.
Am J Crit Care ; 33(2): 82-92, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424024

RESUMO

BACKGROUND: Hyperoxemia, often overlooked in critically ill patients, is common and may have adverse consequences. OBJECTIVE: To evaluate the incidence of hyperoxemia induced by oxygen therapy in nonsurgical critically ill patients at intensive care unit (ICU) admission and the association of hyperoxemia with hospital mortality. METHODS: This prospective cohort study included all consecutive admissions of nonsurgical patients aged 18 years or older who received oxygen therapy on admission to the Hospital Santa Luzia Rede D'Or São Luiz adult ICU from July 2018 through June 2021. Patients were categorized into 3 groups according to Pao2 level at ICU admission: hypoxemia (Pao2<60 mm Hg), normoxemia (Pao2= 60-120 mm Hg), and hyperoxemia (Pao2 >120 mm Hg). RESULTS: Among 3088 patients, hyperoxemia was present in 1174 (38.0%) and was independently associated with hospital mortality (odds ratio [OR], 1.32; 95% CI, 1.04-1.67; P=.02). Age (OR, 1.02; 95% CI, 1.02-1.02; P<.001) and chronic kidney disease (OR, 1.55; 95% CI, 1.02-2.36; P=.04) were associated with a higher rate of hyperoxemia. Factors associated with a lower rate of hyperoxemia were Sequential Organ Failure Assessment score (OR, 0.88; 95% CI, 0.83-0.93; P<.001); late-night admission (OR, 0.80; 95% CI, 0.67-0.96; P=.02); and renal/metabolic (OR, 0.22; 95% CI, 0.13-1.39; P<.001), neurologic (OR, 0.02; 95% CI, 0.01-0.05; P<.001), digestive (OR, 0.23; 95% CI, 0.13-0.41; P<.001), and soft tissue/skin/orthopedic (OR, 0.32; 95% CI, 0.13-0.79; P=.01) primary reasons for hospital admission. CONCLUSION: Hyperoxemia induced by oxygen therapy was common in critically ill patients and was linked to increased risk of hospital mortality. Health care professionals should be aware of this condition because of its potential risks and unnecessary costs.


Assuntos
Hiperóxia , Oxigênio , Adulto , Humanos , Oxigênio/uso terapêutico , Hiperóxia/etiologia , Hiperóxia/complicações , Estudos Prospectivos , Estado Terminal/terapia , Estudos Retrospectivos , Unidades de Terapia Intensiva
9.
Hum Exp Toxicol ; 43: 9603271231222873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166464

RESUMO

Background: Hyperoxia-induced acute lung injury (HALI) is a complication to ventilation in patients with respiratory failure, which can lead to acute inflammatory lung injury and chronic lung disease. The aim of this study was to integrate bioinformatics analysis to identify key genes associated with HALI and validate their role in H2O2-induced cell injury model.Methods: Integrated bioinformatics analysis was performed to screen vital genes involved in hyperoxia-induced lung injury (HLI). CCK-8 and flow cytometry assays were performed to assess cell viability and apoptosis. Western blotting was performed to assess protein expression.Results: In this study, glycoprotein non-metastatic melanoma protein B (Gpnmb) was identified as a key gene in HLI by integrated bioinformatics analysis of 4 Gene Expression Omnibus (GEO) datasets (GSE97804, GSE51039, GSE76301 and GSE87350). Knockdown of Gpnmb increased cell viability and decreased apoptosis in H2O2-treated MLE-12 cells, suggesting that Gpnmb was a proapoptotic gene during HALI. Western blotting results showed that knockdown of Gpnmb reduced the expression of Bcl-2 associated X (BAX) and cleaved-caspase 3, and increased the expression of Bcl-2 in H2O2 treated MLE-12 cells. Furthermore, Gpnmb knockdown could significantly reduce reactive oxygen species (ROS) generation and improve the mitochondrial membrane potential.Conclusion: The present study showed that knockdown of Gpnmb may protect against HLI by repressing mitochondrial-mediated apoptosis.


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , Melanoma , Glicoproteínas de Membrana , Humanos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/prevenção & controle , Apoptose , Proteína bcl-X , Peróxido de Hidrogênio , Hiperóxia/complicações , Hiperóxia/genética , Hiperóxia/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Glicoproteínas de Membrana/genética , Inativação Gênica
10.
Exp Cell Res ; 435(2): 113945, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286256

RESUMO

Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease among neonates, with increasing morbidity and mortality. This study aims to investigate the effect and mechanism of lysine demethylase 3A (KDM3A) on hyperoxia-induced BPD. Hyperoxia-induced BPD mouse and alveolar epithelial cell models were constructed. The effects of hyperoxia on lung development were evaluated by histological and morphological analysis. The levels of KDM3A, E26 transformation specific-1 (ETS1), H3 lysine 9 dimethylation (H3K9me2), and endoplasmic reticulum (ER) stress-related indexes were quantified by RT-qPCR, Western blot, and IF staining. Cell apoptosis was assessed by flow cytometry and TUNEL staining. Transfection of oe-ETS1, oe-KDM3A, and sh-ETS1 was applied in hyperoxia-induced alveolar epithelial cells to explore the mechanism of the KDM3A/ETS1 axis in hyperoxia-induced apoptosis. KDM3A inhibitor IOX1 was applied to validate the in vivo effect of KDM3A in hyperoxia-induced BPD mice. The results displayed that hyperoxia-induced BPD mice showed reduced body weight, severe destruction of alveolar structure, decreased radial alveolar count (RAC), and increased mean linear intercept (MLI) and mean alveolar diameter (MAD). Further, hyperoxia induction down-regulated ETS1 expression, raised ER stress levels, and increased apoptosis rate in BPD mice and alveolar epithelial cells. However, transfection of oe-ETS1 improved the above changes in hyperoxia-induced alveolar epithelial cells. Moreover, transfection of oe-KDM3A up-regulated ETS1 expression, down-regulated H3K9me2 expression, inhibited ER stress, and reduced apoptosis rate in hyperoxia-induced alveolar epithelial cells. In addition, transfection of sh-ETS1 reversed the inhibitory effect of KDM3A on hyperoxia-induced apoptosis by regulating ER stress. In vivo experiments, KDM3A inhibitor IOX1 intervention further aggravated BPD in newborn mice. In a word, KDM3A alleviated hyperoxia-induced BPD in mice by promoting ETS1 expression.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Modelos Animais de Doenças , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/metabolismo , Lisina/metabolismo , Fatores de Transcrição/metabolismo
11.
Free Radic Biol Med ; 211: 35-46, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081439

RESUMO

Pregnant women exposed to polycyclic aromatic hydrocarbons (PAHs) are at increased risk for premature delivery. Premature infants often require supplemental oxygen, a known risk factor for bronchopulmonary dysplasia (BPD). Cytochrome P450 (CYP) enzymes have been implicated in hyperoxic lung injury. We hypothesize that prenatal PAH exposure exacerbates oxygen-mediated lung injury in neonatal mice, and that this effect is differentially altered in mice lacking the gene for (Cyp)1a1, 1a2, or 1b1. Timed pregnant wild type (WT) (C57BL/6J) mice were orally administered a PAH mixture of benzo[a]pyrene (BP) and benzo[b]fluoranthene (BbF) or the vehicle corn oil (CO) once daily on gestational days 16-19, and the dose response on postnatal lung injury was examined. In addition, timed pregnant mice with one of four genotypes, WT, Cyp1a1-null, Cyp1a2-null, and Cyp1b1-null, were treated orally with CO or PAH on gestational days 16-19 and exposed to hyperoxia or room air for 14 days. Lung injury was assessed on PND15 by radial alveolar count (RAC) and mean linear intercept (MLI) Gene expression of DNA repair genes in lung and liver were measured. Results showed that neonatal hyperoxic lung injury is augmented by prenatal PAH exposure in a dose-dependent manner. This effect was differentially altered in the Cyp-null mice, with Cyp1a2-null showing the greatest extent of lung injury. We concluded that newborn mice exposed to PAH in utero had more significant lung injury in response to hyperoxia than non-PAH exposed pups, and that CYP1A1 and CYP1A2 are protective against lung injury while CYP1B1 augments lung injury.


Assuntos
Hiperóxia , Lesão Pulmonar , Hidrocarbonetos Policíclicos Aromáticos , Efeitos Tardios da Exposição Pré-Natal , Humanos , Recém-Nascido , Feminino , Animais , Camundongos , Gravidez , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Lesão Pulmonar/induzido quimicamente , Hiperóxia/complicações , Hiperóxia/genética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Sistema Enzimático do Citocromo P-450 , Oxigênio , Camundongos Knockout
12.
Diabetes Care ; 47(3): 409-417, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153805

RESUMO

OBJECTIVE: ß-Cell dysfunction and insulin resistance magnify the risk of kidney injury in type 2 diabetes. The relationship between these factors and intraglomerular hemodynamics and kidney oxygen availability in youth with type 2 diabetes remains incompletely explored. RESEARCH DESIGN AND METHODS: Fifty youth with type 2 diabetes (mean age ± SD 16 ± 2 years; diabetes duration 2.3 ± 1.8 years; 60% female; median HbA1c 6.4% [25th, 75th percentiles 5.9, 7.6%]; BMI 36.4 ± 7.4 kg/m2; urine albumin-to-creatinine ratio [UACR] 10.3 [5.9, 58.0] mg/g) 21 control participants with obesity (OCs; age 16 ± 2 years; 29% female; BMI 37.6 ± 7.4 kg/m2), and 20 control participants in the normal weight category (NWCs; age 17 ± 3 years; 70% female; BMI 22.5 ± 3.6 kg/m2) underwent iohexol and p-aminohippurate clearance to assess glomerular filtration rate (GFR) and renal plasma flow, kidney MRI for oxygenation, hyperglycemic clamp for insulin secretion (acute C-peptide response to glucose [ACPRg]) and disposition index (DI; ×103 mg/kg lean/min), and DXA for body composition. RESULTS: Youth with type 2 diabetes exhibited lower DI (0.6 [0.0, 1.6] vs. 3.8 [2.4, 4.5] × 103 mg/kg lean/min; P < 0.0001) and ACPRg (0.6 [0.3, 1.4] vs. 5.3 [4.3, 6.9] nmol/L; P < 0.001) and higher UACR (10.3 [5.9, 58.0] vs. 5.3 [3.4, 14.3] mg/g; P = 0.003) and intraglomerular pressure (77.8 ± 11.5 vs. 64.8 ± 5.0 mmHg; P < 0.001) compared with OCs. Youth with type 2 diabetes and OCs had higher GFR and kidney oxygen availability (relative hyperoxia) than NWCs. DI was associated inversely with intraglomerular pressure and kidney hyperoxia. CONCLUSIONS: Youth with type 2 diabetes demonstrated severe ß-cell dysfunction that was associated with intraglomerular hypertension and kidney hyperoxia. Similar but attenuated findings were found in OCs.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperóxia , Resistência à Insulina , Adolescente , Humanos , Feminino , Adulto Jovem , Adulto , Masculino , Diabetes Mellitus Tipo 2/complicações , Secreção de Insulina , Hiperóxia/complicações , Rim , Resistência à Insulina/fisiologia , Taxa de Filtração Glomerular , Oxigênio , Insulina
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166885, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714499

RESUMO

Perioperative hyperoxia therapy is of great significance to save the lives of patients, but little is known about the possible mechanisms that induce hyperoxia-induced acute lung injury (HALI) and the measures for clinical prevention and treatment. In this experiment, the models were established with a feeding chamber with automatic regulation of oxygen concentration. The results showed that with the increase in inhaled oxygen concentration and the prolongation of exposure time, the severity of lung injury also increases significantly, reaching the diagnostic indication of HALI after 48 h of inhaling 95 % oxygen concentration. Subsequently, according to the dynamic changes of apoptosis in lung specimens, and the expression changes in Sig-1R-regulated ER stress pathway proteins (Sig-1R, GRP78, p-PERK, ATF6, IRE1, Caspase-12, ATF4, CHOP, Caspase-3 and p-JNK), it was confirmed that the Sig-1R-regulated ER stress signaling pathway was involved in the occurrence of HALI. To explore the preventive and therapeutic effects of routine clinical medication on HALI during the perioperative period, our research group selected dexmedetomidine (Dex) with lung protection. The experimental results revealed that Dex partially reversed the changes in the expression levels of Sig-1R-regulated ER stress pathway proteins. These results preliminarily confirmed that Dex may inhibit apoptosis induced by high oxygen concentration through the Sig-1R-regulated ER stress signaling pathway, thus playing a protective role in HALI.


Assuntos
Lesão Pulmonar Aguda , Dexmedetomidina , Hiperóxia , Humanos , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Hiperóxia/complicações , Estresse do Retículo Endoplasmático , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Oxigênio , 60610
14.
BMJ Open Respir Res ; 10(1)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097355

RESUMO

BACKGROUND: Supraphysiological oxygen administration causes unfavourable clinical outcomes in various diseases. This study aimed to determine whether hyperoxia would be associated with increased mortality in patients with severe infection. METHODS: A post-hoc analysis of a nationwide multicentre prospective observational study on sepsis (SPICE Study) was conducted, including adult patients admitted to the intensive care unit with available arterial partial pressure of oxygen (PaO2) at the treatment initiation for severe infection. Hyperoxia was defined as a PaO2 level of ≥300 mm Hg and in-hospital mortality was compared between patients with and without hyperoxia. RESULTS: Of the 563 patients eligible for the study, 49 had hyperoxia at treatment initiation for severe infection. The in-hospital all-cause mortality rates of patients with and without hyperoxia were 14 (29.2%) and 90 (17.6%), respectively. Inverse probability weighting analyses with propensity scores revealed the association between hyperoxia and increased in-hospital mortality rate (28.8% vs 18.8%; adjusted OR 1.75 (1.03 to 2.97); p=0.038), adjusting for patient demographics, comorbidities, site of infection, severity of infection, haemodynamic and respiratory status, laboratory data and location of patient at infection development. Acute lung injury developed more frequently in patients with hyperoxia on the following days after infection treatment, whereas sepsis-related mortality was comparable regardless of hyperoxia exposure. CONCLUSION: Hyperoxia with PaO2 ≥300 mm Hg at treatment initiation of severe infection was associated with an increased in-hospital mortality rate in patients requiring intensive care. The amount of oxygen to administer to patients with severe infection should be carefully determined. TRIAL REGISTRATION NUMBER: University Hospital Medical Information Network Clinical Trial Registry (UMIN000027452).


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , Sepse , Adulto , Humanos , Hiperóxia/complicações , Estudos Retrospectivos , Oxigênio , Lesão Pulmonar Aguda/complicações
15.
Biomolecules ; 13(11)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002338

RESUMO

Despite advances in treatment options, such as corticosteroid administration and less invasive respiratory support, bronchopulmonary dysplasia (BPD) remains an important prognostic factor in preterm infants. We previously reported that furin regulates changes in lung smooth muscle cell phenotypes, suggesting that it plays a critical role in BPD pathogenesis. Therefore, in this study, we aimed to evaluate whether it regulates the alveolarization of immature lungs through activating alveolarization-driving proteins. We first examined furin expression levels, and its functions, using an established hyperoxia-induced BPD mouse model. Thereafter, we treated mice pups, as well as primary myofibroblast cell cultures, with furin inhibitors. Finally, we administered the hyperoxia-exposed mice pups with recombinant furin. Immunofluorescence revealed the co-expression of furin with alpha-smooth muscle actin. Hyperoxia exposure for 10 d decreased alveolar formation, as well as the expression of furin and its target, IGF-1R. Hexa-D-arginine administration also significantly inhibited alveolar formation. Another furin inhibitor, decanoyl-RVKR-chloromethylketone, accumulated pro-IGF-1R, and decreased IGF-1R phosphorylation in myofibroblast primary cultures. Finally, recombinant furin treatment significantly improved alveolarization in hyperoxia-exposed mice pups. Furin regulates alveolarization in immature lungs. Therefore, this study provides novel insights regarding the involvement of furin in BPD pathogenesis, and highlights a potential treatment target for ameliorating the impact of BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Pneumonia , Animais , Humanos , Recém-Nascido , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Furina/genética , Furina/metabolismo , Hiperóxia/complicações , Hiperóxia/metabolismo , Recém-Nascido Prematuro , Pulmão/metabolismo , Lesão Pulmonar/patologia , Pneumonia/metabolismo
16.
Med Sci (Basel) ; 11(4)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987325

RESUMO

Acute hypoxic respiratory failure (AHRF) is a prominent feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) critical illness. The severity of gas exchange impairment correlates with worse prognosis, and AHRF requiring mechanical ventilation is associated with substantial mortality. Persistent impaired gas exchange leading to hypoxemia often warrants the prolonged administration of a high fraction of inspired oxygen (FiO2). In SARS-CoV-2 AHRF, systemic vasculopathy with lung microthrombosis and microangiopathy further exacerbates poor gas exchange due to alveolar inflammation and oedema. Capillary congestion with microthrombosis is a common autopsy finding in the lungs of patients who die with coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome. The need for a high FiO2 to normalise arterial hypoxemia and tissue hypoxia can result in alveolar hyperoxia. This in turn can lead to local alveolar oxidative stress with associated inflammation, alveolar epithelial cell apoptosis, surfactant dysfunction, pulmonary vascular abnormalities, resorption atelectasis, and impairment of innate immunity predisposing to secondary bacterial infections. While oxygen is a life-saving treatment, alveolar hyperoxia may exacerbate pre-existing lung injury. In this review, we provide a summary of oxygen toxicity mechanisms, evaluating the consequences of alveolar hyperoxia in COVID-19 and propose established and potential exploratory treatment pathways to minimise alveolar hyperoxia.


Assuntos
COVID-19 , Hiperóxia , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2 , Estado Terminal , Hiperóxia/complicações , Oxigênio , Hipóxia , Inflamação
17.
Sci Rep ; 13(1): 19538, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945645

RESUMO

Neonatal hyperoxia induces long-term systemic vascular stiffness and cardiovascular remodeling, but the mechanisms are unclear. Chemokine receptor 7 (CXCR7) represents a key regulator of vascular homeostasis and repair by modulating TGF-ß1 signaling. This study investigated whether pharmacological CXCR7 agonism prevents neonatal hyperoxia-induced systemic vascular stiffness and cardiac dysfunction in juvenile rats. Newborn Sprague Dawley rat pups assigned to room air or hyperoxia (85% oxygen), received CXCR7 agonist, TC14012 or placebo for 3 weeks. These rat pups were maintained in room air until 6 weeks when aortic pulse wave velocity doppler, cardiac echocardiography, aortic and left ventricular (LV) fibrosis were assessed. Neonatal hyperoxia induced systemic vascular stiffness and cardiac dysfunction in 6-week-old rats. This was associated with decreased aortic and LV CXCR7 expression. Early treatment with TC14012, partially protected against neonatal hyperoxia-induced systemic vascular stiffness and improved LV dysfunction and fibrosis in juvenile rats by decreasing TGF-ß1 expression. In vitro, hyperoxia-exposed human umbilical arterial endothelial cells and coronary artery endothelial cells had increased TGF-ß1 levels. However, treatment with TC14012 significantly reduced the TGF-ß1 levels. These results suggest that dysregulation of endothelial CXCR7 signaling may contribute to neonatal hyperoxia-induced systemic vascular stiffness and cardiac dysfunction.


Assuntos
Hiperóxia , Disfunção Ventricular Esquerda , Animais , Humanos , Ratos , Animais Recém-Nascidos , Células Endoteliais , Fibrose , Hiperóxia/complicações , Análise de Onda de Pulso , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1 , Remodelação Vascular
18.
J Matern Fetal Neonatal Med ; 36(2): 2272577, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884440

RESUMO

OBJECTIVE: To investigate the correlation between the aryl hydrocarbon receptor (AhR) and reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMCs) of premature infants, to demonstrate the protective role of AhR against hyperoxia-induced oxidative stress in premature infants and to provide a rational basis for the use of omeprazole (OM) as a new treatment for bronchopulmonary dysplasia (BPD). METHODS: From January 2021 to June 2021, 1-3 ml of discarded peripheral blood was collected from premature infants of gestational age less than 32 weeks who were not taking inhaled oxygen and were admitted to the Department of Neonatology of the Affiliated Hospital of Southwest Medical University. Using a random number table, the PBMCs were randomly assigned to each of the following groups: the control group, air + OM group, hyperoxia group, and hyperoxia + OM group. After 48 h of in vitro modeling and culture, PBMCs and the culture medium of each group were collected. Immunofluorescence analysis was used to examine ROS levels in PBMCs. A full-spectrum spectrophotometer was used to examine malondialdehyde (MDA) levels in the culture medium. Enzyme-linked immunosorbent assay (ELISA) was used to examine monocyte chemotactic protein 1 (MCP-1) levels in culture medium. Immunofluorescence analysis was used to examine the intracellular localization of AhR. Western blotting was used to examine the expression level of AhR in PBMCs. RESULTS: Compared with those in the control group, the levels of ROS, MDA, and MCP-1 and the cytoplasm-nuclear translocation rate of AhR in the air + OM group did not change significantly (p > 0.05), but the expression level of AhR increased significantly (p < 0.05). The levels of ROS, MDA, and MCP-1 and the cytoplasm-nuclear translocation rate of AhR significantly increased in the hyperoxia group (p < 0.05), and the expression level of AhR was significantly reduced (p < 0.05). Compared with those in the hyperoxia group, the levels of ROS, MDA, and MCP-1 in the hyperoxia + OM group were significantly reduced (p < 0.05), and the cytoplasm-nuclear translocation rate of AhR and the expression level of AhR were significantly increased (p < 0.05), but did not reach the level of the control group (p < 0.05). CONCLUSION: OM can activate AhR to inhibit hyperoxia-induced oxidative stress in the PBMCs from premature infants.


Assuntos
Hiperóxia , Humanos , Recém-Nascido , Lactente , Hiperóxia/complicações , Espécies Reativas de Oxigênio/metabolismo , Omeprazol/farmacologia , Omeprazol/uso terapêutico , Receptores de Hidrocarboneto Arílico/metabolismo , Leucócitos Mononucleares/metabolismo , Recém-Nascido Prematuro , Estresse Oxidativo , Pulmão/metabolismo
19.
J Emerg Med ; 65(6): e495-e510, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37867037

RESUMO

BACKGROUND: The detrimental effects of hyperoxia exposure have been well-described in patients admitted to intensive care units. However, data evaluating the effects of short-term, early hyperoxia exposure in patients intubated in the prehospital setting or emergency department (ED) have not been systematically reviewed. OBJECTIVE: Our aim was to quantify and describe the existing literature examining the clinical outcomes in ED patients exposed to hyperoxia within the first 24 h of mechanical ventilation. METHODS: This review was performed in concordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for scoping reviews. Two rounds of review using Rayyan QCRI software were performed for title and abstract screening and full-text search. Of the 2739 articles, 27 articles were retrieved after initial screening, of which 5 articles were excluded during the full-text screening, leaving 22 articles for final review and data extraction. RESULTS: Of 22 selected publications, 9 described patients with traumatic brain injury, 6 with cardiac arrest, 3 with multisystem trauma, 1 with stroke, 2 with septic shock, and 1 was heterogeneous. Three studies were randomized controlled trials. The available data have widely heterogeneous definitions of hyperoxia exposure, outcomes, and included populations, limiting conclusions. CONCLUSIONS: There is a paucity of data that examined the effects of severe hyperoxia exposure in the acute, post-intubation phase of the prehospital and ED settings. Further research with standardized definitions is needed to provide more detailed guidance regarding early oxygen titration in intubated patients.


Assuntos
Parada Cardíaca , Hiperóxia , Humanos , Adulto , Hiperóxia/complicações , Hiperóxia/diagnóstico , Oxigênio , Respiração Artificial , Serviço Hospitalar de Emergência
20.
Cells ; 12(20)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887312

RESUMO

The progression to fibrosis and traction in retinopathy of prematurity (ROP) and other ischemic retinopathies remains an important clinical and surgical challenge, necessitating a comprehensive understanding of its pathogenesis. Fibrosis is an unbalanced deposition of extracellular matrix components responsible for scar tissue formation with consequent tissue and organ impairment. Together with retinal traction, it is among the main causes of retinal detachment and vision loss. We capitalize on the Limited Hyperoxia Induced Retinopathy (LHIPR) model, as it reflects the more advanced pathological phenotypes seen in ROP and other ischemic retinopathies. To model LHIPR, we exposed wild-type C57Bl/6J mouse pups to 65% oxygen from P0 to P7. Then, the pups were returned to room air to recover until later endpoints. We performed histological and molecular analysis to evaluate fibrosis progression, angiogenesis, and inflammation at several time points, from 1.5 months to 9 months. In addition, we performed in vivo retinal imaging by optical coherence tomography (OCT) or OCT Angiography (OCTA) to follow the fibrovascular progression in vivo. Although the retinal morphology was relatively preserved, we found a progressive increase in preretinal fibrogenesis over time, up to 9 months of age. We also detected blood vessels in the preretinal space as well as an active inflammatory process, altogether mimicking advanced preretinal fibrovascular disease in humans.


Assuntos
Hiperóxia , Neovascularização Retiniana , Retinopatia da Prematuridade , Vitreorretinopatia Proliferativa , Animais , Camundongos , Fibrose , Hiperóxia/complicações , Inflamação/patologia , Isquemia/patologia , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Vasos Retinianos , Retinopatia da Prematuridade/induzido quimicamente , Retinopatia da Prematuridade/complicações , Retinopatia da Prematuridade/patologia , Vitreorretinopatia Proliferativa/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...